20 research outputs found

    "C’est du propre !": quelle place pour l’hygiène dans l’intervention du curateur, dans le canton de Fribourg ?

    Get PDF
    L’hygiène : un sujet relativement vaste, qui confronte les convictions de tous pour la définir et lui donner une norme qui reste propre à chacun. A travers ce travail de Bachelor, il s’agit de mettre en exergue le fait que la problématique de l’hygiène occupe une place dans le travail du curateur. Pour ce faire, cette étude propose un approfondissement des notions d’hygiène, de travail social, d’assistant social et de curatelle, en développant notamment un historique de ces termes, valables pour la société de l’Europe occidentale, ainsi qu’en les articulant les unes s aux autres. Puis, grâce aux entretiens avec deux Juges de paix et cinq curateurs, cette recherche entend, d’une part, présenter comment les professionnels de la région fribourgeoise appréhendent l’hygiène d’une personne concernée par une mesure de curatelle et, d’autre part, déterminer quelle place ils accordent à cette problématique. Enfin, une analyse des témoignages obtenus est présentée, suivie de plusieurs propositions de pistes

    A cost effective AFM setup, combining interferometry and FPGA

    No full text
    International audienceAtomic force microscopes (AFM) provide high resolution images of surfaces. In this paper, we focus on an interferometry method for estimation of deflections in arrays of cantilever in quasi-static regime. We propose a novel complete solution with a least square based algorithm to determine interference fringe phases and its optimized FPGA implementation. Simulations and real tests show very good results and open perspectives for real-time estimation and control of cantilever arrays in the dynamic regime

    Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    Get PDF
    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio

    Studying Potential Side Channel Leakages on an Embedded Biometric Comparison System

    Get PDF
    We study in this work the potential side channel leakages of a hardware biometric comparison system that has been designed for fingerprints. An embedded biometric system for comparison aims at comparing a stored biometric data with a freshly acquired one without the need to send the stored biometric data outside the system. Here one may try to retrieve the stored data via side channel, similarly as for embedded cryptographic modules where one may try to exploit side channel for attacking the modules. On one hand, we show that we can find partial information by the means of simple Side Channel Analysis that may help to retrieve the stored fingerprint. On the other hand, we illustrate that reconstructing the fingerprint remains not trivial and we give some simple countermeasures to protect further the comparison algorithm

    Correlating Global Gene Regulation to Angiogenesis in the Developing Chick Extra-Embryonic Vascular System

    Get PDF
    International audienceBACKGROUND: Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. METHOLOGY/PRINCIPAL FINDINGS: We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21-66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. CONCLUSIONS/SIGNIFICANCE: Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis

    Physical properties and interactions of biomolecules:an atomic force microscopy study

    No full text
    The aim of this thesis was to explore the statistical physics and the mechanical properties of individual biomolecules, to study their interactions, and to develop new techniques based on atomic force microscopy (AFM). First, we exploit the high resolution imaging of AFM over long DNA molecules adsorbed on a surface to measure the average end-to-end distance as a function of the DNA length, along with its full distribution function. The latter is almost never determined experimentally, and is not available with ensemble techniques, such as light scattering. We found that the scaling exponents are closer to the values predicted by the polymer theory for a 3D self-avoiding random walk (SAW) than for a 2D SAW. These results suggest that the adsorption process of the DNA molecules is akin to a geometric projection from 3D to 2D, known to preserve the scaling properties of fractal objects of dimension df < 2. Second, taking advantage of the possibility of AFM to also manipulate biomolecules, we investigate the specific interactions between the glycoprotein avidin and the vitamin biotin, the ribonuclease barnase and its inhibitor barstar, and the West Nile Virus surface glycoprotein E and the laminin binding protein. The dependence of the most probable unbinding force on the force loading rate has revealed details of the energy landscapes of the unbinding process of these highly efficient and specific interactions. Beside this standard method, we have measured the lifetime of the avidin-biotin bond, kept stretched at a constant force, as a function of this force, and combined this approach with a small dithering of the AFM tip in order to further explore the avidin-biotin energy landscape. Finally, the viscoelastic properties of biomolecules, such as dextran and titin, have been studied using standard force spectroscopy combined with a small oscillation of the AFM tip. A theoretical description for excitation frequencies near the first and the second resonance of the cantilever has been developed to be able to extract, from the amplitude and phase measurement of the oscillations, the stiffness and friction coefficients of the biomolecule being stretched. We conclude that an excitation frequency of 3 kHz gives reliable results for the stiffness measurement whereas frequencies of 15-25 kHz are more appropriate for the dissipation measurements

    Effets d'une supplémentation en acides gras essentiels sur la santé (de la biochimie au conseil en officine)

    No full text
    NANCY1-SCD Pharmacie-Odontologie (543952101) / SudocSudocFranceF

    Atomic force microscopy of complex DNA knots

    No full text
    Capítulo en: Jorge A. Calvo; Kenneth C. Millett; Eric J. Rawdon; Andrzej Stasiak (eds.). Physical and Numerical Models in Knot Theory: Including Applications to the Life Sciences. New Jersey: World Scientific, 2005, p.161-170. (Series on Knots and everything ; 36). ISBN 9812561870. ISBN: 978-981-256-187-9 . ISBN: 978-981-4480-85-7This work was supported by the Swiss Natural Science Foundation (project 2100-063746.00/1) and partly by the Roche Research FoundationPeer Reviewe

    Potentiation of Polarized Intestinal Caco-2 Cell Responsiveness to Probiotics Complexed with Secretory IgA*

    No full text
    The precise mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple consequences that remain poorly understood at the molecular level. Deciphering such events can provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the mucosal immune system include maturation prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. Using human intestinal epithelial Caco-2 cell grown as polarized monolayers, we found that association of a Lactobacillus or a Bifidobacterium with nonspecific secretory IgA (SIgA) enhanced probiotic adhesion by a factor of 3.4-fold or more. Bacteria alone or in complex with SIgA reinforced transepithelial electrical resistance, a phenomenon coupled with increased phosphorylation of tight junction proteins zonula occludens-1 and occludin. In contrast, association with SIgA resulted in both enhanced level of nuclear translocation of NF-κB and production of epithelial polymeric Ig receptor as compared with bacteria alone. Moreover, thymic stromal lymphopoietin production was increased upon exposure to bacteria and further enhanced with SIgA-based complexes, whereas the level of pro-inflammatory epithelial cell mediators remained unaffected. Interestingly, SIgA-mediated potentiation of the Caco-2 cell responsiveness to the two probiotics tested involved Fab-independent interaction with the bacteria. These findings add to the multiple functions of SIgA and underscore a novel role of the antibody in interaction with intestinal bacteria

    Metabolic and Nutritional Characteristics of Long-Stay Critically Ill Patients

    Get PDF
    insufficient feeding is frequent in the intensive care unit (ICU), which results in poor outcomes. Little is known about the nutrition pattern of patients requiring prolonged ICU stays. The aims of our study are to describe the demographic, metabolic, and nutritional specificities of chronically critically ill (CCI) patients defined by an ICU stay &gt;2 weeks, and to identify an early risk factor. analysis of consecutive patients prospectively admitted to the CCI program, with the following variables: demographic characteristics, Nutrition Risk Screening (NRS-2002) score, total daily energy from nutritional and non-nutritional sources, protein and glucose intakes, all arterial blood glucose values, length of ICU and hospital stay, and outcome (ICU and 90-day survival). Two phases were considered for the analysis: the first 10 days, and the next 20 days of the ICU stay. parametric and non-parametric tests. 150 patients, aged 60 ± 15 years were prospectively included. Median (Q1, Q3) length of ICU stay was 31 (26, 46) days. The mortality was 18% at ICU discharge and 35.3% at 90 days. Non-survivors were older (p = 0.024), tended to have a higher SAPSII score (p = 0.072), with a significantly higher NRS score (p = 0.033). Enteral nutrition predominated, while combined feeding was minimally used. All patients received energy and protein below the ICU's protocol recommendation. The proportion of days with fasting was 10.8%, being significantly higher in non-survivors (2 versus 3 days; p = 0.038). Higher protein delivery was associated with an increase in prealbumin over time (r &lt;sup&gt;2&lt;/sup&gt; = 0.19, p = 0.027). High NRS scores may identify patients at highest risk of poor outcome when exposed to underfeeding. Further studies are required to evaluate a nutrition strategy for patients with high NRS, addressing combined parenteral nutrition and protein delivery
    corecore